
THE VISUALIZATION OF UNSTRUCTURED POLYHEDRAL GRIDS

BY

BRAD RATHKE

BS, Binghamton University, 2009

THESIS

Submitted in partial fulfillment of the requirements for
the degree of Master of Science in Computer Science

in the Graduate School of
Binghamton University

State University of New York
2015

c© Copyright by Brad Rathke, 2015

All Rights Reserved

Accepted in partial fulfillment of the requirements for
the degree of Master of Science in Computer Science

in the Graduate School of
Binghamton University

State University of New York
2015

August 4, 2015

Kenneth Chiu, Chair and Faculty Advisor
Department of Computer Science, Binghamton University

Lijun Yin, Member
Department of Computer Science, Binghamton University

iii

Abstract

Efficient visualization of volumetric data sets is an ever present need in the scientific visual-

ization community. While interactive visualization of regularly structured grids is a largely

solved problem unstructured grids are a persistent problem. Most attempts at improving

the speed at which unstructured grids may be rendered have focused on utilization of GPU

hardware which is in general only available in a minority of systems in any given data cen-

ter. This thesis presents a method of visualizing unstructured grid data sets without the

use of GPU hardware using a software ray tracer built as a plug-in module for the Intel

OSPRay ray tracing framework. The method is capable of implicit isosurface rendering and

direct volume ray casting of homogeneous unstructured grids and multilevel data sets with

interactive frame rates and scales with variable SIMD widths and thread counts.

iv

Acknowledgments

Firstly, I wold like to express my gratitude to my adviser Professor Kenneth Chiu for

his continuous support for my graduate studies, for his patience, motivation, and immense

knowledge of the field. His guidance helped me during the time of my research and in

the writing of this thesis. I could not have asked for a better adviser and mentor for my

graduate studies.

Additionally I would like to give special thanks to my other committee member Lijun

Yin for contributing his expertise in the field of computer graphics to this process.

My sincere thanks goes also to Jim Jeffers, Ingo Wald, Gregory P. Johnson, Gregory S.

Johnson, Bruce Cherniak, and Tim Rowley who allowed me the opportunity to join their

team at Intel as an intern. Without their knowledge, support, and continual encouragement

this research would not have been possible.

Lastly I would like to thank my family and friends, all of whom continue to support me

throughout my studies and inspire me to aim higher.

v

Table of Contents

List of Tables ix

List of Figures x

List of Algorithms xii

List of Abbreviations xiii

1 Introduction 1

2 Volume Rendering 3

2.1 What is Volume Rendering . 3

2.2 Applications of Volume Rendering . 4

2.3 Structured and Unstructured Volumes . 6

2.4 Volume Rendering Methods . 6

2.4.1 Structured Volume Rendering Methods 6

2.4.2 Unstructured Volume Rendering Methods 8

3 Analysis of Unstructured Grids 10

3.1 Advantages of Unstructured Volumes . 10

3.1.1 Variable Detail . 10

3.1.2 Accuracy . 11

3.2 Disadvantages of Unstructured Volumes . 11

3.2.1 Connectivity Information Must Be Stored 11

3.2.2 Irregular Layout . 12

vi

3.3 Impacts on Visualization . 12

3.3.1 Impacts on Cell Intersection . 12

3.3.2 Connectivity Information and Ray Tracing 13

3.3.3 Grid and Cell Concavity . 14

4 Visualizing Unstructured Grids With Min Max BVH 15

4.1 Method Overview . 15

4.2 The Min-Max BVH . 16

4.2.1 Constructing the Min-Max BVH 16

4.2.2 Memory Layout . 17

4.2.3 Handling Time Varying Meshes . 18

4.3 Implicit Isosurface Ray Tracing . 19

4.3.1 Tree Traversal . 19

4.3.2 Empty Space Skipping . 22

4.3.3 Isosurface Intersection . 22

4.3.4 Shading . 22

4.3.5 Multiple Isosurfaces From a Single Volume 24

4.3.6 Dynamic Isosurface Rendering . 24

4.4 Direct Volume Ray Casting . 25

4.4.1 Tree Traversal . 25

4.4.2 Cell Sampling . 26

4.4.3 Frame Accumulation . 27

4.4.4 Adaptive Empty Space Skipping . 27

5 Results and Discussion 29

5.1 Test Machine Descriptions . 29

5.2 Collected Results . 29

5.3 Buckyball Scene . 30

5.4 Jets & T-jet Scene . 31

vii

5.5 SF1 Scene . 32

5.6 Earthquake Scene . 32

5.7 CPU vs Coprocessor . 33

5.8 Comparison to other CPU based methods 34

5.9 Comparison to GPU based methods . 34

6 Conclusions 35

6.1 Conclusions . 35

6.2 Future Work . 35

6.2.1 In-situ visualization . 35

6.2.2 Hybrid Traversal Methods and Other Acceleration Structures . . . 36

6.2.3 Further Exploration of wide SPPs 36

APPENDICES

A Glossary of Terms 37

Bibliography 37

viii

List of Tables

4.1 A comparison of both traversal algorithms on the Xeon Node (specifications
in Chapter 5). Measurements are for primary rays only. 21

4.2 A comparison of different sample group sizes for each data set as measured
on our Xeon Node. Values are in millions of rays per second. The values in
bold represent the highest achieved for the data set. 26

4.3 Performance scaling of sample group size against ray marching distance on
the Xeon Node. All measurements are in millions of rays per second with
the Jets data set. The values in bold are the highest throughput achieved
for the step size. For reference, the ray marching distance used for the Jets
data set in Table 4.2 was 10. 27

5.1 Specifications for the two test machines used in our experiments. 29

5.2 Performance measurements for our two test machines in both isosurface
visualization and DVR visualization. 30

ix

List of Figures

1.1 The “Jets” data set rendered via multiple isosurfaces each of which have
their own material properties (a) and via direct volume rendering using a
hand tuned transfer function such that the resulting image has a similar
form to the multi-isosurface presentation (b). Images from [14] 2

2.1 The “Magnetic Reconnection” [5] structured volume data set rendered via
direct volume ray casting using the OSPRay Volume Renderer [1]. 3

2.2 Three DVR renderings of a CT scan of the abdomen and pelvis. Each
rendering is done with a different transfer function to highlight different
scalar field value ranges. 4

2.3 A DVR visualization of a publicly available grid generated from a rotational
c-arm x-ray scan of the arteries of the right half of a human head. An
aneurysm is present. 5

2.4 Isosurface representation of shock waves emitted from the epicenter of an
earthquake. 5

4.1 Data Layout of an MMBVH node. 18

4.2 Three time steps of the “Fusion” data set visualized using our DVR renderer.
Each time step is represented by its own MMBVH and switching between
them is handled with a simple pointer swap by the viewer. 19

4.3 The five data sets used in our experiments (in increasing geometric com-
plexity), in this figure rendered as isosurfaces using an ambient occlusion
renderer. 19

4.4 The Central Difference Equation . 22

4.5 The bucky ball volume data set rendered with (a) The OSPRay OBJ renderer
without shadows, (b) The OSPRay OBJ renderer with shadows, (c) The
OSPRay ambient occlusion renderer with 16 AO samples. 23

4.6 T-jet rendered with isovalues of (a) -0.0390374, (b) 0.00290815, (c) 0.0364645 24

4.7 The same data sets as in Figure 4.3, this time rendered with direct volume
ray casting using appropriate transfer functions. 25

x

4.8 Signed point-to-plane distance formula. Note that CF is the center point of
the plane on which Face F exists and NF is the normal from that same plane. 27

4.9 The wave front artifact initially exhibited by our DVR algorithm. 28

5.1 The buckyball data set rendered (a) as an isosurface using a 16 sample
ambient occlusion renderer, (b) Via DVR 30

5.2 The jets data set rendered (a) as an isosurface using a 16 sample ambient
occlusion renderer, (b) Via DVR . 31

5.3 The T-jet data set rendered (a) as an isosurface using a 16 sample ambient
occlusion renderer, (b) Via DVR . 31

5.4 The jets data set rendered (a) as an isosurface using a 16 sample ambient
occlusion renderer, (b) Via DVR . 32

5.5 The jets data set rendered (a) as an isosurface using a 16 sample ambient
occlusion renderer, (b) Via DVR . 33

xi

List of Algorithms

4.1 Implicit Isosurface MMBVH Traversal . 20
4.2 Surface Intersection Algorithm For Implicit Isosurfaces 23

xii

List of Abbreviations

• AMR - Automatic Mesh Refinement

• AO - Ambient Occlusion

• BST - Binary Search Tree

• BVH - Bounding Volume Hierarchy

• CT - Computerized Tomography

• DVR - Direct Volume Ray Casting

• GPU - Graphics Processing Unit

• ISPC - Intel SPMD Program Compiler

• MMBVH - Min-Max Bounding Volume Hierarchy. AKA Implicit BVH.

• MMKDTree - Min-Max KDTree. AKA Implicit KD Tree.

• MRI - Magnetic Resonance Imaging

• RGBA - Red Green Blue Alpha color representation

• SAH - Spatial Area Heuristic

• SIMD - Single Instruction Multiple Data

• SPMD - Single Program Multiple Data

• SPP - Sample Position Packet

• TSFSL - Two Sided Face Sequence List

xiii

Chapter 1

Introduction

As the computation power has increased over the years domain scientists have increased

the sophistication of their simulations. This increase in simulation complexity has allowed

for continual leaps in both the scale of the simulations themselves as well as the volume and

accuracy of the generated data. Modern simulations generate data on such a scale that the

time-steps stored are moving ever further apart to account for both the final size on disk

as well as the time taken to write the data. Because storage of a given data set is so space

intensive it is not desirable to keep multiple copies in various formats.

Techniques to optimize the rendering of massive simulation data sets have often focused

on regular grids or polygonal data sets. However, some simulations generate unstructured or

multilevel grids and these techniques are not effective for such data sets. Since resampling

the unstructured or multilevel data into a structured grid may not be acceptable it is

desirable to have the ability to render unstructured grids directly.

In this work we will describe our approach to the visualization of unstructured poly-

hedral data sets as well as its integration into an existing scientific rendering framework.

It is demonstrated that the rendering technique allows for the rendering of homogeneous

unstructured polyhedral grids in interactive time as either an implicit isosurface or through

direct volume ray casting. Our technique also avoids any resampling or reformatting of the

grids themselves by allowing for directly working on the source data.

We briefly summarize previous techniques for volume rendering in Chapter 2. In Chap-

ter 3 we analyze the aspects of unstructured grid data that causes structured grid rendering

techniques to be ineffective as well as why resampling an unstructured grid into a structured

1

grid may be unacceptable. Chapter 4 presents our technique for implicit isosurface rendering

and direct volume ray casting of unstructured polyhedral grids which was first presented

in [14]. Further exploration of the results from the previous paper will be presented in

Chapter 5 and finally our conclusions will be presented in Chapter 6.

(a) (b)

Figure 1.1: The “Jets” data set rendered via multiple isosurfaces each of which
have their own material properties (a) and via direct volume rendering using a hand
tuned transfer function such that the resulting image has a similar form to the multi-
isosurface presentation (b). Images from [14]

2

Chapter 2

Volume Rendering

2.1 What is Volume Rendering

Volume data sets are in simplest terms a 3D scalar field. The scalar values in a field

may represent any physical value of the data set. For example a volume data set generated

through the use of an MRI may use the scalar field to represent variations in density of the

scanned object.

Figure 2.1: The “Magnetic Reconnec-
tion” [5] structured volume data set ren-
dered via direct volume ray casting using
the OSPRay Volume Renderer [1].

There are various types of 3D scalar field such as regular grids, polyhedral grids, or

curvilinear grids. All types of 3D scalar field can be categorized into one of two groups;

structured or unstructured grids. A structured grid has a scalar field for which a given

topological pattern is repeated in all directions of space. A regular grid is a canonical

example of a structured grid. The second group of 3D scalar fields has no topological

pattern and is known as an unstructured grid. A collection of connected tetrahedra of

varying dimensions is an example of an unstructured grid.

Given the above description of volume data sets, volume rendering can be defined as

3

a set of techniques used to visualize a 3D scalar field. In general volumes are visualized

by either generating an isosurface representation of the volume or by direct volume ray

casting (DVR). The basic overview of isosurface generation is to inspect each voxel of a grid

and extract a surface for the isovalue of interest for every voxel. DVR in general follows a

process of casting a ray through a volume and marching along it taking samples assigning

an RGBA value to the sample through a transfer function. Volume rendering methods will

be covered in more detail in section 2.4

It can be difficult to come up with a useful transfer function for any given data set and

each data set will likely need one or more unique transfer functions to highlight the useful

areas of the scalar field. In general transfer functions are created through trial and error,

or with a priori knowledge of the data set. Changes in transfer function can drastically

change the resulting image.

Figure 2.2: Three DVR renderings of a CT scan of the abdomen and pelvis. Each
rendering is done with a different transfer function to highlight different scalar field
value ranges.

2.2 Applications of Volume Rendering

Volume visualization is a useful tool for any domain scientist to have at their disposal for

data analysis. 3D visualization of scalar fields allows for visual data exploration and analysis

which can be used to confirm a given hypothesis about the data. Given its usefulness volume

visualization has found a home in many scientific fields.

Volume visualization is used often in medical fields for visualization of machine-generated

4

Figure 2.3: A DVR visualization of a
publicly available grid generated from a
rotational c-arm x-ray scan of the arter-
ies of the right half of a human head. An
aneurysm is present.

imagery of a patient (e.g. MRI, CT, PET, or ultrasound scans)[18][16][19]. The patient

scans can be visualized to assist in diagnosis by allowing medical professionals to accurately

see inside of a patient without surgery. For instance a visualization of an MRI could be used

to assist a radiologist in planning radiation therapy for a cancer patient. Medical schools

may also keep a library of scans which students could use for training purposes.

Volume visualization is also often used in scientific simulation. For instance a fluid

dynamics simulation of turbulence around a virtual automobile can be used by engineers

when fine tuning its aerodynamics before physical production. Meteorological simulations

can also be visualized to assist in climate modeling.

Figure 2.4: Isosurface representation of
shock waves emitted from the epicenter
of an earthquake.

Seismology is yet another field in which volume visualization may be applied[8]. Volume

visualization has seen wide use in the oil and gas sectors to assist with exploration of oil

well sites. Seismologists can also use visualizations generated from real earthquake data

and compare with visualizations of simulated earthquake data to assist in the modeling of

future seismologic events

5

As we can see volume visualization can be applied in a wide range of fields. In fact it

may be applied in any field for which a 3d scalar field can be generated.

2.3 Structured and Unstructured Volumes

As was mentioned previously there are two overall groups of volumes. In this section

we will detail the key differences between the two groups.

Although there are various types, structured volumes follow a well defined set of rules

for their construction. All structured volumes have the points in their scalar field aligned

such that a pattern is followed. For instance, a sphere may be divided into a curvilinear

grid by segmenting it out from the radius. Although such a grid will have voxels that vary

in size, it is still a structured grid because a regular pattern is followed.

As a rule of thumb a 3D scalar field is structured if the voxel containing a 3D cartesian

coordinate can be determined implicitly. Because of the voxels can be located implicitly

sampling and traversal of the volume is relatively cheap when compared to unstructured

grids.

An unstructured grid has no real rules regarding its topology. Such grids can be formed

of one or more types of polyhedra and cell sizes may or may not vary wildly. Because of these

properties we cannot implicitly determine which voxel to use for a given sample position

nor can we tell which voxels a ray will pass through and as such acceleration structures

become necessary for performant visualization.

2.4 Volume Rendering Methods

In this section we will discuss methods of volume visualization both as an isosurface

or through DVR. These methods range from purely CPU based to GPU based and from

rasterization based to ray tracing based.

2.4.1 Structured Volume Rendering Methods

Levoy first introduced volume rendering using a software ray tracer [7]. This early

method was largely brute force in nature and consisted of simply tracing rays into a volume

6

with a fixed step size and interpolating a value for the sample position from nearby voxels.

This method was so computationally expensive that on contemporary machines render times

for a 1133 volume and 2562 viewing plane were as high as forty minutes per image.

Isosurfaces may first be extracted from a volume data set using an algorithm such as

marching cubes [9] or through tree-traversal methods such as those using an octree [24].

Since these methods produce a polygonal mesh the final visualization methods of such

implementations do not fall within the scope of this paper. However, it should be noted

that creating an explicit isosurface in memory can take significant amounts processing time.

Parker et al. [13] present a distributed shared memory approach to ray tracing an iso-

surface representation of the “visible woman” data set which is a 910MB 512x512x1734

structured volume. An implicit isosurface is generated at rendering time via trilinear in-

terpolation of the grid cells. As an optimization a three level hierarchical grid was used to

allow for empty-space skipping. Through utilization of up to 128 CPUs interactive frame

rates were achieved.

Wald et al. [21] introduced a CPU-based method of interactively visualizing implicit

isosurfaces for structured volumes using a min-max KDTree. By taking advantage of SIMD

processor extensions for both traversal and voxel intersection they were able to achieve

interactive frame rates for a 640x480 screen size. By leveraging OpenRT, which their ap-

proach was built built for, they were able to achieve roughly linear scaling across a small

cluster of nodes.

Knoll et al. [6] developed a CPU-based system using a min-max BVH structures for spa-

tial domain decomposition of structured volumes to produce both isosurface renderings and

DVR renderings. Their system also focused on coherent traversal of the MMBVH structure

allowing for packets of rays to traverse the tree as a group. Such coherent traversal systems

enable high utilization of SIMD lanes in a processor lending to the strong performance of

the solution.

7

2.4.2 Unstructured Volume Rendering Methods

Shirley et al. [17] introduced the projected tetrahedron algorithm for DVR visualization

of tetrahedral grids. In this method each tetrahedral cell is be approximated through

transparent triangles. Each transparent triangle approximation is then passed off to a GPU

for rasterization. The results are not perfectly accurate, however they are visually similar

to more exact methods and are able to be rendered significantly faster than contemporary

methods.

Marmitt et al. [10] use an interesting approach for direct volume rendering of tetrahedral

volumes. First an initial intersection is found using some well known acceleration structure

such as a KDtree or BVH. Plücker coordinates are used to determine whether an oriented

line passes clockwise or counter clockwise around another oriented line or even whether or

not they intersect. After the initial intersection is found the tetrahedral mesh is traversed

in Plücker space simplifying mesh traversal down to an average of 2.67 tests on average for

each traversal step.

Childs et al. [2] introduced a parallel shared memory algorithm for rendering massive

structured and unstructured volume data sets. Their algorithm relies on generating a

logically structured grid and rendering it slice by slice to produce the final image. These

steps are intended to be distributed across many CPUs in a cluster and as such there is an

extra back-to-front compositing step to complete rendering the final image. The algorithm

allowed for sample-based volume rendering large data sets in seconds per frame rather than

minutes or hours.

Wald et al. [20] worked forward from the techniques in [21] using an MMBVH rather

than an MMKDTree. Their approach is limited to tetrahedral meshes and only supports

isosurface rendering, but is also expanded to support time varying meshes. The approach

also relies on a specialized frustum traversal of the tree which may be difficult to integrate

into an existing ray tracing framework such as OSPRay.

Muigg et al. [11] introduced a method of visualizing complex polyhedral grids. Such

grids made up of mixed polyhedra previously needed to be transformed into homogeneous

8

tetrahedral grids prior to visualization. Their approach makes clever use of a two sided

face sequence list (TSFSL) to traverse between cells without needing to traverse some

external acceleration structure to find the next cell. After determining the exit face the

entrance face of the next polyhedra is easily determined by walking the TSFSL. This quick

volume traversal allowed for interactive volume visualization of complex polyhedral meshes

on contemporary hardware. Although this method as currently implemented makes use of

a GPU for ray-casting it would be quite interesting to implement and test its performance

on modern CPU hardware to circumvent any bottlenecks due to bus speed or GPU memory

size constraints.

Any of the above techniques that can be applied to hexahedral grids may also be applied

to regular and rectilinear grids. This is due to the fact that regular and rectilinear grids are

simply special cases of hexahedral grid for which a priori knowledge is available about their

structure. However, applying such methods to the aforementioned structured grid types is

likely to yield worse performance than using a specially tailored algorithm.

9

Chapter 3

Analysis of Unstructured Grids

Scientists often use unstructured polyhedral meshes to represent volume data sets in

cases where a structured mesh cannot meet their demands. The key advantages of unstruc-

tured meshes are accuracy and variable element size. However to gain these advantages

costs are paid in terms of the models themselves becoming more complex. In general we

can say that the trade off between unstructured and structured grids is that unstructured

grids are more accurate while structured grids are less complex.

Next we will explore these trade offs in further detail from the perspective of a simulation

author or scientist generating volume data from physical phenomena. Later we will discuss

the impact the changes to mesh structure have on visualization.

3.1 Advantages of Unstructured Volumes

3.1.1 Variable Detail

Simulations may not have uniform information frequency across the entire simulation

domain and real physical measurements almost certainly do not. Since a regular grid allows

for no variation in cell size or orientation it can be difficult to match a one to physical

phenomena or simulations with high cell-to-cell variance in information frequency.

Unstructured grids on the other hand have no true limits on variance in cell size and

orientation. Such meshes can simply connect the vertices into a collection of general poly-

hedral shapes. It should be noted that polyhedra generated through these methods can

be concave, which requires special consideration when rendering. Figure ?? illustrates this

difference albeit generalized to a two dimensional data set.

10

Consider a basic point cloud and an intention to represent it as a volume data set. If we

attempt to represent it as a structured grid it is highly likely that we will need to resample

the data values from their original positions and values into the grid positions and new

values. Depending on data irregularity it could be necessary to use a very fine resolution

structured grid. Alternatively we could convert the point cloud into a tetrahedral mesh. In

this case we can faithfully represent the original data without introducing any error, but

we would need to keep track of connectivity information for every cell.

3.1.2 Accuracy

As noted in Section 3.1.1 and Figure ?? unstructured meshes are in the majority of

cases a more accurate representation of the original data than structured meshes are. Since

a structured mesh will contain the weighted averages of the data points at each grid point

some amount of data accuracy will be lost. This loss in accuracy can be mitigated by

increasing mesh granularity but there will continue to be some small amount of loss.

Unstructured grids on the other hand have no need to recompute the values from the

original positions into new grid positions because the original positions do not need to

change. Because the values are not recomputed no accuracy can be lost. Due to this

property an unstructured grid can tightly fit any simulated data set and as such can more

closely mimic physical phenomena.

3.2 Disadvantages of Unstructured Volumes

3.2.1 Connectivity Information Must Be Stored

Since connectivity information in an unstructured grid is not implicitly defined as it

is in structured grids node-to-node connections must be stored explicitly. This causes a

significant increase in file storage overhead for unstructured grids. For example a tetrahedral

grid will need to store the connectivity information for each individual tetrahedron. Given

a mesh containing two tetrahedra and assuming each index value is stored as a 32bit integer

we would have 32 bytes of storage overhead. Assuming each vertex is stored as four 32bit

floats (one for scalar field value and three for position) we would have a vertex storage cost

11

of 80 bytes because 3 vertices must be shared between the two tetrahedra for the mesh to

be continuous. This is a 40% storage overhead which is no small amount when scientists

are already having to make choices between saving fewer simulation time steps or running

smaller simulations due to output file size.

It should be noted however that there is storage overhead in a regular grid as well, it

is just much harder to quantify. Since a very high granularity mesh may be necessary in

order to accurately represent high frequency data it is highly probable that many grid cells

throughout a grid made artificially fine to meet such a need could be wasted null values

taking up storage. The amount of overhead in this case of course will vary wildly based on

factors such as grid granularity and simulation frequency variance.

3.2.2 Irregular Layout

Unstructured grids are highly irregular by their very nature. We cannot make assump-

tions on the size of the cells making up the grid or their orientations. Worse yet, unlike

structured grids we cannot assume that spatial locality implies memory locality; cells that

are close spatially may be far apart in memory.

3.3 Impacts on Visualization

We will now discuss the impacts that using an unstructured grid has on visualization

when compared to using a structured mesh.

3.3.1 Impacts on Cell Intersection

In the case of a structured mesh cells can be located in constant time for all meshes

with the same dimensionality. Given that the granularity of the structured grid is known we

can determine which cell a given sample position or ray will pass through with some trivial

math. All structured grids can have the cell in which a sample position resides found in

constant time by simply scaling the world coordinates for xyz into the model coordinates of

the mesh and then determining which cell on that dimension those coordinates correspond

to through simple arithmetic.

12

No such equations exist for cell location in an unstructured grid. As such with no

acceleration structures an unstructured grid would have a computational complexity when

finding a cell of O(n) where n is the number of cells. If spatial partitioning tree is employed

we are able to computational complexity of cell retrieval becomes O(loga(n)) where a is the

arity of the tree and n is the cell count.

Given that cell location times increase as mesh complexity increases sampling cells in

massive models can become prohibitively expensive. This is especially true as larger viewing

planes or higher sampling rates come into play. However, some possible optimizations have

been employed to overcome this hurdle, such as packet tracing[20] and schemes which keep

track of neighboring cells[11].

It should noted however that many structured grid visualization systems will use an

acceleration structure so this is not a particularly huge impact. Structured grid visualization

systems often use acceleration structures to facilitate empty space skipping for performance

reasons. Acceleration structures used for structured grids however will in general be much

more shallow than an acceleration structure used for an unstructured grid since its focus

will be only for empty space skipping and not for leaf retrieval. Structured grid systems

can afford to build their acceleration structures over relatively large blocks of cells and then

simply do brute force calculations within the block taking advantage of high data locality

and cache coherency.

3.3.2 Connectivity Information and Ray Tracing

The connectivity information stored by an unstructured grid can be used by a ray tracer

to facilitate walking the grid. These methods use the connectivity information to generate

lists of shared faces such as the TSFSL data structured used in [11]. Once a list of shared

faces is available it is very simple to walk the unstructured grid and avoids repeatedly

traversing the acceleration structure.

Cell projection methods such as [17] on the other hand are able to ignore most of the

extra connectivity information in the mesh. The only connectivity information needed by

cell projection methods is the face definitions. This is due to each polygon being projected

13

and rasterized independently of the others.

3.3.3 Grid and Cell Concavity

Unstructured volumes may have holes or gaps in the underlying mesh which can cause

problems for many visualization algorithms. The main issue with concave meshes in regards

to cell projection methods is in visibility ordering. Improper ordering can cause significant

rendering artifacts, however mesh convexification algorithms can be used to eliminate such

cases[3][15].

Unstructured grids commonly consist partially or entirely of concave polyhedra. Many

algorithms, both ray tracing and rasterization based do not support concave polyhedra. As

such, concave polyhedra need to be split to decompose them into convex polyhedra.

14

Chapter 4

Visualizing Unstructured Grids With Min Max BVH

4.1 Method Overview

The following chapters will discuss the our work and findings in [14] Our approach

is motivated by the approaches found in [6] and [20]. We extend the two methods to

accomplish both isosurface and DVR visualization of unstructured grids using the MMBVH

data structure. Our algorithm does not currently handle general polyhedral grids and such

an implementation is left as future work.

Our implementation uses two layers of BVH to facilitate integration into the OSPRay

rendering framework. This is due to the embree[23] BVH which OSPRay is designed around

having no support for extension to an MMBVH.

To circumvent this limitation we build our own MMBVH and have OSPRay treat it as if

it were an axis aligned hexahedral surface. If a ray fired by OSPRay intersects the surface,

the ray is passed off to an internal intersection handler to do all volume integration. Due to

this implementation the highly performant hybrid traversal routines in the embree core are

unfortunately not usable and our MMBVH implementation does all of the heavy lifting.

At a high level our algorithm is performed in 7 steps.

1. Read volume data into memory.

2. Build the MMBVH tree over all cells in the grid.

3. Pass the MMBVH as a black-box to OSPRay so that an embree BVH may be built.

4. Cast rays via OSPRay. On a hit within the embree tree intersection and traversal are
delegated to our internal MMBVH.

5. Traverse the MMBVH in the appropriate manner for the visualization method (iso-
surface or DVR).

15

6. Use the collision information generated in the previous step to generate an accumu-
lation buffer.

7. From the accumulation buffer generate a frame.

Steps one through three only need to be performed once per run of the software and

as such are not factored into render speed measurements. Steps four through seven on the

other hand are performed for each frame and are included in our frame timings.

4.2 The Min-Max BVH

The MMBVH structure is the linchpin of our visualization algorithm. Our MMBVH

implementation is similar to those found in [20] and [6], however we create our own traversal

kernels for both isosurface and DVR visualization.

Our binary MMBVH has a worst case cell intersection time of O(n) due to bounding vol-

ume overlap. In the worst case sibling MMBVH nodes would overlap 100% of the time and

in such a case a ray would be forced to test against all MMBVH nodes. However, in practice

our MMBVH has a height of θ(log2(n)) and little cell overlap and as such intersection scales

similarly to the expected scaling of a BST of the same height at O(log2(n)).

4.2.1 Constructing the Min-Max BVH

The MMBVH is built over all cells of the polyhedral grid. Building over all cells allows

us to in the case of isosurface visualization dynamically change the rendered isovalue or

render multiple isovalues from the same volume without reconstructing the MMBVH. In

cases such as AMR data where multi-part data sets are common we build an individual

MMBVH for each piece as well as a parent MMBVH containing all pieces.

Due to MMBVH build times not being the focus of our work and the fact that their

construction is a one time cost we chose to implement our MMBVH builder as a simple

scalar single threaded process. Although build times with such an implementation are less

than stellar they are acceptable for our purposes. However it should be noted that as cell

count increases build times do begin to become prohibitive as exhibited by the MMBVH

build for the earthquake data set taking minutes to complete. Even though the MMBVH

16

is built with purely scalar code the memory layout is SIMD friendly and so it is it is used

natively by our ISPC traversal and intersection code.

The MMBVH is constructed using both a SAH[4] and a splitting criterion. The SAH

test simply states that a node will be split only if the total surface area of the two newly

created nodes will be less than the surface area of the currently existing node. Our splitting

criterion is that no leaf node will contain more than seven cells. As such a cell will be split

even if the SAH test fails if it will contain more than seven grid cells.

4.2.2 Memory Layout

Since we do not guarantee that our MMBVH will be balanced we cannot use the common

array storage scheme for binary trees in which a node stored at array index i can find its

children at indices i and i+1 without wasting potentially significant amounts of memory

space. Instead while still storing our nodes as a single contiguous array we make use of

a reference value to locate the next node. We guarantee that sibling nodes will be stored

contiguously to one another and as such only need to store a single reference because we

can easily jump to the next child from the first. A single MMBVH node contains upper

and lower bound information for the volume as well as upper and lower bound information

for the scalar field and finally a child count and reference to the left child. The ISPC

implementation of the MMBVH node structure can be seen in Figure 4.1.

Our MMBVH is built around a single scalar field. Volumes in which multiple scalar

fields exist will necessitate construction of a unique MMBVH for each scalar field and each

field would effectively be treated as its own OSPRay Volume.

The prim count value is used to differentiate intermediate and leaf nodes. A node

with prim count of 0 is considered to be an intermediate node and a node with any other

prim count is a leaf node. We do not need to store a special count for children of interme-

diate nodes because we guarantee that any intermediate node will always have two children.

Since we dedicate only 3 bits of storage to prim count a leaf may only reference up to 7

primitives.

The ref value is dual purpose. If the node is designated as a leaf node ref will be

17

a reference from the beginning of the array of primitives and from prim count we will

know how many primitives we may read ahead from that index without issue. If the node

is designated as an intermediate node ref will be a reference from the beginning of the

MMBVH array to the first child node.

struct MinMaxBVH2Node {
float bounds low[3];
float scalar range low ;
float bounds high[3];
float scalar range high ;
int64 prim count : 3;
int64 ref : 61;
};

Figure 4.1: Data Layout of an MMBVH node.

4.2.3 Handling Time Varying Meshes

There are three obvious avenues for handling time varying data sets.

1. Rebuild the MMBVH each time the scalar field changes.

2. Update the portions of the MMBVH that change along with the scalar field changes.

3. Build a separate MMBVH for each time step at start-up.

Due to our scalar single threaded MMBVH build option 1 is not viable. Even the

smallest data sets we work with take a time equivalent to that of rendering many frames.

As such, without improving our MMBVH build times we cannot use this option.

Option 2, while attractive in that at a glance it seems to do the least amount of actual

work is often more expensive than option 1. Since we may need to move entire sub-trees

around in memory in unpredictable ways the cost is often very high.

Option 3, while at a glance is the most expensive also offers the best runtime perfor-

mance. We simply pay the computation costs at once during start-up and never again during

runtime. We do pay a cost in keeping extra trees in memory, but this can be mitigated by

paging non-adjacent time steps out of RAM.

18

Figure 4.2: Three time steps of the “Fusion” data set visualized using our DVR
renderer. Each time step is represented by its own MMBVH and switching between
them is handled with a simple pointer swap by the viewer.

Although the cost of storing many trees can be quite high we still choose option 3. This

option is the best tailored to our goals as an interactive system and given that unlike GPU

based implementations we have easy access to all system memory available we prioritize

freeing up processor clock cycles during interaction over memory usage.

4.3 Implicit Isosurface Ray Tracing

Bucky Ball (Bucky) Turbulent Jet (T-jet) Jets San Francisco Bay (SF1) Japan Earthquake

(177k tetrahedra) (1M tetrahedra) (12M tetrahedra) (14M tetrahedra) (47M hexahedra)

Figure 4.3: The five data sets used in our experiments (in increasing geometric
complexity), in this figure rendered as isosurfaces using an ambient occlusion renderer.

As the name suggests; in implicit isosurface visualization we never actually create an

explicit isosurface in memory. Instead we visualize a virtual isosurface as an artifact of

MMBVH traversal and cell intersection.

4.3.1 Tree Traversal

Traversal of the MMBVH structure is implemented with ISPC to take full advantage

of all vector units available in the target hardware. To accomplish this we create mirror

19

implementations of the C++ versions of each structure necessary for operating on the

MMBVH. No actual copies of the structures are made, pointers are simply passed from

one execution environment to the other. We evaluate two potential methods of MMBVH

traversal both of which follow the general structure found in Algorithm 4.1.

Algorithm 4.1: Implicit Isosurface MMBVH Traversal
node = root;

if isLeaf(node) then

for each primitive p do

intersect(p, ray.t)

end

return ray

else

Ray a = ray; Ray b = ray

if inRange(iso, node.left.isoRange) then

traverse(a, node.left)

end

if inRange(iso, node.right.isoRange) then

traverse(b, node.right)

end

if a.t < b.t then

return a

else

return b

end

end

The first potential method is pure SPMD traversal. In this method each program in-

stance traverses the MMBVH independently and keeps a program-instance-unique traversal

stack. The SPMD algorithm is trivial to implement in ISPC by simply giving all traversal

state variables the varying storage qualifier which allows each SIMD lane to perform its

own independent traversal.

20

Data Set Size SPMD Packet Gain
Bucky 177k tets 68.9 103.2 50%
Jets 1M tets 79.9 92.0 15%
T-jet 12M tets 90.7 109.4 21%
SF1 14M tets 60.2 78.7 31%

Earthquake 47M hexes 14.1 46.3 228%

Table 4.1: A comparison of both traversal algorithms on the Xeon Node (specifications
in Chapter 5). Measurements are for primary rays only.

The second method Packet Traversal [22] groups rays into packets of size equal to the

width of the SIMD lanes of the target machine. ISAs supporting AVX/AVX2 will create

packets of eight rays while SSE machines will produce packets of four rays. When traversing

as a packet all rays must be attempting intersection of the same bounding volume or cell

in unison. The packet traversal algorithm follows the same basic structure as the SPMD

algorithm, however all traversal state tracking variables use uniform types and must be

treated as if they were memory shared between multiple concurrent threads of execution.

If a ray has terminated earlier than its peers either by exiting the volume or successfully

finding the closest possible intersection along that ray for the isovalue of interest that SIMD

lane will still continue to traverse with the group, but all new calculation results will be

thrown away. Our implementation of packet traversal also makes use of the concept of

speculative decent as seen in the motivating works. If any ray in a packet is found to need

to descend the tree all companion rays will also descend the tree.

Our methodology for comparing the two methods was to collect performance metrics in

terms of millions of rays per second for each of our test data sets and to then compare their

average value. We also took into account how well each algorithm scaled as cell count and

tree complexity increased. These figures can be seen in Table 4.1.

Through our measurements we observed that the packet traversal algorithm is more

performant with all of our test data sets and scales significantly better as well. In particular

packet traversal achieves the highest performance increase with our largest data set. The

significant increase in percentage speedup from packet traversal of the largest data set is

that the scalar overhead of our traversal algorithm is dwarfed by the amount of traversal

21

computations necessary for such a large tree. From these results we elected to implement

the packet algorithm as our traversal method for all future measurements.

4.3.2 Empty Space Skipping

Since our MMBVH is built over all cells of the unstructured grid it stands to reason

that some cells and by some extension some sub-trees of the MMBVH will not contain the

isovalue of interest. Such subs-trees can be considered to be empty space for the purposes of

visualizing the appropriate isosurface. As an optimization we delay our ray-box intersection

tests such that they are only executed if the isovalue for the current surface is within the

min and max range of the sub-tree represented by the current MMBVH node. If the sub-

tree cannot contain the isovalue we simply skip that entire sub-tree. This allows us to

dynamically skip potentially large areas of the grid and is often a significant performance

gain.

4.3.3 Isosurface Intersection

When intersecting a cell we calculate an intersection point with the virtual surface

through the use of the Neubaur method [12]. We first test that the ray intersects a given

cell, generating tin and tout in the process. We then apply Neubauer’s method with N=2

to generate thit through successively subdividing the line segment intersecting the cell and

interpolating along it. Pseudo-code for the algorithm can be found in Algorithm 4.2. This

algorithm is repeated for all cells with potentially contain the appropriate isosurface and

the closest hit (smallest thit) is returned to the OSPRay renderer after a shading normal is

generated.

4.3.4 Shading

δh[f](x) = f(x+ 1
2
h)− f(x− 1

2
h)

Figure 4.4: The Central Difference Equation

22

Algorithm 4.2: Surface Intersection Algorithm For Implicit Isosurfaces

tin = inf; tout = -inf;
for each cell plane do

tphit = intersect(ray, plane)
tin = min(tphit, tin) tout = max(tphit, tout)

end
if tin > tout then return NO HIT;
t0 = tin; t1 = tout; v0 = interpolate(ray, cell, t0); v1 = interpolate(ray, cell, t1);
for i=1..N do

t = t0 + (t1 − t0) iso−v0
v1−v0

if sign(interpolate(ray, cell, t)) == sign(v0 - iso) then
t0 = t; v0 = interpolate(ray, cell, t)

else
t1 = t; v1 = interpolate(ray, cell, t)

end

end
thit = t0 + (t1 − t0) iso−v0

v1−v0
return thit

If an intersection with the virtual isosurface is found we use the central differences

method (See Figure 4.4) on each dimension to approximate a surface normal. The surface

normal generated is used by the pre-implemented OSPRay renderer currently in use for

shading. No modifications to the existing renderers were necessary for our methods. Ex-

amples of different renderers and shading models being applied to the same isosurface with

the same light and camera can be seen in Figure 4.5

(a) (b) (c)

Figure 4.5: The bucky ball volume data set rendered with (a) The OSPRay OBJ
renderer without shadows, (b) The OSPRay OBJ renderer with shadows, (c) The
OSPRay ambient occlusion renderer with 16 AO samples.

23

4.3.5 Multiple Isosurfaces From a Single Volume

When rendering multiple implicit isosurfaces from a single volume we perform traversal

for all isovalues of interest in unison. At each traversal step where an isovalue needs to be

considered we simply consider all isovalues of interest in round robin fashion. In the event

that any intersections are found we return the intersection with the smallest thit value to

the renderer using the isovalue index in the round-robin queue as a surface ID. It is then

the renderer’s decision whether the ray should continue traversing the tree (as in the case of

a transparent isosurface) or if traversal should terminate (opaque isosurface or the renderer

has decided that any further contribution from the ray would be negligible). A rendering

of the jets data set with multiple isosurfaces can be seen in Figure 1.1(a).

4.3.6 Dynamic Isosurface Rendering

Building our MMBVH over all cells in the grid implies that we can represent all possible

isosurfaces for a given scalar field with a single MMBVH. As such we can simply change the

isovalue of interest at runtime to produce a different isosurface. There is no appreciable per-

formance impact beyond extra memory use in allowing this due to the ability to skip entire

sub-trees if the current isovalue cannot exist in that sub-tree as shown in Section 4.3.2. An

example of three different isosurfaces all generated from the T-jet can be seen in Figure 4.6.

Figure 4.6: T-jet rendered with isovalues of (a) -0.0390374, (b) 0.00290815, (c)
0.0364645

24

Bucky Ball (Bucky) Turbulent Jet (T-jet) Jets San Francisco Bay (SF1) Japan Earthquake

(177k tetrahedra) (1M tetrahedra) (12M tetrahedra) (14M tetrahedra) (47M hexahedra)

Figure 4.7: The same data sets as in Figure 4.3, this time rendered with direct
volume ray casting using appropriate transfer functions.

4.4 Direct Volume Ray Casting

We implement a sample-based visualization algorithm for unstructured grids using the

same MMBVH structure that is used for implicit isosurface visualization. Although the data

structures used remain the same the way we act on them changes somewhat drastically.

Through this we extend the existing OSPRay DVR visualization capabilities to include

visualization of homogeneous unstructured tetrahedral or hexahedral grids.

4.4.1 Tree Traversal

Traversal of the MMBVH for sample-based DVR is still packet based as in the case

of implicit isosurface visualization. However, given a packet of rays we generate multiple

sample position packets (SPP). Each SPP traverses the tree with the same speculative

decent rules as in the case of isosurface visualization, however instead of ray-box intersection

tests we are performing point-in-box tests for each bounding volume.

In an attempt to minimize the number of tree traversal operations due to sampling we

extended our concept of SPP to include multiple samples of each ray. In this case we group

N sample positions from each ray in a packet. A packet of M rays each with N sample

positions will have NM samples in the SPP. In this case we still speculatively descend if any

sample in the SPP needs to descend the tree.

The performance impact of this change was highly dependent on the sample group size.

Sample groups that were too large caused performance drops. We speculate that these

performance drops were likely due to samples within the same group existing in different

25

Group Size
Data Set 1 4 8 16 24 32

Bucky 54.6 56.5 56.0 54.9 52.4 49.6
Jets 5.2 5.2 5.4 5.3 5.2 5.1
T-jet 4.0 4.4 4.5 4.5 4.4 4.3
SF1 9.9 9.6 9.5 9.0 8.7 8.4

Earthquake 12 13.7 15.9 17.7 17.8 17.3
Average difference from baseline across data sets

0 +.74 +1.12 +1.14 +.56 -.2

Table 4.2: A comparison of different sample group sizes for each data set as measured
on our Xeon Node. Values are in millions of rays per second. The values in bold
represent the highest achieved for the data set.

sub-trees. It is also notable that optimal SPP width varied on a per volume basis. However

a general trend can be seen in that for most models an SPP width greater than 1 was

optimal. We chose for this work to choose the SPP width that produced the best results

on average across our suite of test volumes yielding an SPP width of 16 and an average

increase of 1.14 million rays per second. Our measurements can be seen in Table 4.2.

We also found an interesting trend in the relation between the fixed step size used and

SPP width. Step size and SPP width seem to have a strictly inverse relationship with

regards to performance. As SPP width increases we must reduce step size or we will suffer

performance losses. This is also likely due to the pairing of a wide SPP and large step length

causing samples in the same group to be located in different sub-trees of the MMBVH Our

measurements exhibiting this relation can be found in Table 4.3.

4.4.2 Cell Sampling

Cell sampling is handled in a relatively simple manner. We determine if sample P

exists within a cell by applying the signed planar distance method to each face F of the

polyhedron. If the sign of the distance for all faces of the polyhedron are the same P exists

within the polyhedral cell. This method is simple, reasonably efficient and can be produces

correct results for all polyhedra without holes. Finally, given that P exists within the cell

we calculate the sample value at P by trilinear interpolation from the scalar field values

constituent to the cell.

26

Group Size
1 4 8 16 24 32

Step size
2.5 2.4 2.9 3.1 3.2 3.3 3.3
5 3.5 3.9 4.1 4.1 4.1 4.0

7.5 4.5 4.6 4.7 4.7 4.7 4.5
10 5.2 5.3 5.4 5.3 5.2 4.9

12.5 5.9 6.0 6.0 5.8 5.7 5.5
15 6.5 6.5 6.5 6.3 6.1 6.0

Table 4.3: Performance scaling of sample group size against ray marching distance
on the Xeon Node. All measurements are in millions of rays per second with the Jets
data set. The values in bold are the highest throughput achieved for the step size.
For reference, the ray marching distance used for the Jets data set in Table 4.2 was
10.

D = NF · ({Px, Py, Pz} − {CF
x , C

F
y , C

F
z })

Figure 4.8: Signed point-to-plane distance formula. Note that CF is the center point
of the plane on which Face F exists and NF is the normal from that same plane.

4.4.3 Frame Accumulation

Unfortunately since we generate samples along each ray at a fixed interval this can

exhibit pronounced wave front like artifacts (See Figure 4.9 for an example of this artifact).

To alleviate this artifact we take advantage of an accumulation buffer. Each frame the

starting sample position is jittered randomly between the eye position and the point at

our fixed sample distance along the ray. In this way as the image resolves we manage to

stochastically sample along the ray producing high quality images while maintaining an

interactive environment.

4.4.4 Adaptive Empty Space Skipping

By virtue of our acceleration structure we gain for free the ability to skip what we term

as static empty spaces. A static empty space is an empty space which will exist for all

renderings of a given volume and are a feature of the grid topology.

A dynamic empty space is an empty space which is created at runtime due to interaction

with a user. In our case the only method to create a dynamic empty space is to adjust the

27

Figure 4.9: The wave front artifact initially exhibited by our DVR algorithm.

transfer function used to assign RGBA values to each sample. Examples of dynamic empty

spaces created through transfer function manipulation can be seen in Figure 2.2.

These empty spaces can be trivially skipped similarly to how empty spaces are skipped

in our isosurface visualization method. As we traverse the tree we check at each attempted

descent whether or not all potential sample values in the sub-tree will evaluate to an RGBA

value with an opacity of 0. If the sub-tree will always have an opacity of 0 for the current

transfer function it will be skipped since it is empty space for our purposes.

28

Chapter 5

Results and Discussion

5.1 Test Machine Descriptions

Our two test machines are as follows:

Machine Name Xeon Node Phi Node
CPU 2x Intel R©Xeon R©E5-2687W v3 2x Intel R©Xeon R©E5-2680

CPU Clock 3.1GHz 2.7GHz
Memory 128GB 46GB

Coprocessor N/A 3x Intel R©Xeon PhiTM7120A

Table 5.1: Specifications for the two test machines used in our experiments.

5.2 Collected Results

All performance results were measured when rendering at a resolution of 1080p. All

results were measured by producing the same images on both machines. All measured

images can be found in the section of their respective scene. Unless otherwise noted all

values are in millions of primary rays per second.

For results pertaining to the Phi Node all measurements were taken using only the

coprocessors as execution units. The main CPUs were used only to interact with the

coprocessors. Phi Node results also use 100 samples per pixel per frame as opposed to a

single sample per pixel per frame for the Xeon Node.

Distributed rendering in an MPI parallel execution environment is possible and has been

tested and shown to be working. However this execution environment was not included

in our performance testing due to the MPI environment in OSPRay not being ready for

rigorous use at the time of this research.

29

Xeon Node Phi Node
Data Set Size ISO DVR ISO DVR

Bucky 177k tets 103.2 54.9 365.0 25.3
Jets 1M tets 92.0 5.3 282.0 9.7
T-jet 12M tets 109.4 4.5 418.9 9.8
SF1 14M tets 78.7 9.0 190.8 12.1

Earthquake 47M hexes 46.3 17.7 101.6 16.7

Table 5.2: Performance measurements for our two test machines in both isosurface
visualization and DVR visualization.

5.3 Buckyball Scene

At 177k tets the buckyball is by far our simplest test scene. For this simple scene we

are able to perform well beyond our performance targets for interactivity. In fact, for lower

resolutions such at 10242 we actually achieve real time levels of performance on both of our

test machines for both visualization methods.

Given that the model is so simple we are able to generate a tree with minimal bounding

volume overlap. Due to this tree traversal overhead is kept minimal which is a large boon

to performance for both visualization methods.

(a) (b)

Figure 5.1: The buckyball data set rendered (a) as an isosurface using a 16 sample
ambient occlusion renderer, (b) Via DVR

30

5.4 Jets & T-jet Scene

The Jets and T-jet data set were more problematic. We were able to achieve real time

performance for isosurface rendering yet again. However DVR performance dipped down

into the range of simply being interactive at 1080p.

(a) (b)

Figure 5.2: The jets data set rendered (a) as an isosurface using a 16 sample ambient
occlusion renderer, (b) Via DVR

(a) (b)

Figure 5.3: The T-jet data set rendered (a) as an isosurface using a 16 sample ambient
occlusion renderer, (b) Via DVR

We observed that the MMBVH built by our splitting criterion exhibited high levels of

sibling overlap. As a result of this both visualization methods suffer significant performance

31

loss. However, because our DVR visualization stresses tree traversal much more intensely

a badly formed tree impacted performance far more drastically.

5.5 SF1 Scene

Performance for the SF1 scene was still well within the bounds of real time performance

for isosurface rendering. We also performed quite well under DVR visualization despite

SF1 being a scene that actually suffers due to our usage of wide SPPs. SF1 likely suffers

a performance loss due to wide SPPs due to the fact that the data set itself is rather thin;

it is highly likely that we often performing point in box tests for sample positions that are

well outside the bounds of the volume.

(a) (b)

Figure 5.4: The jets data set rendered (a) as an isosurface using a 16 sample ambient
occlusion renderer, (b) Via DVR

5.6 Earthquake Scene

We continued to achieve realtime performance for isosurface visualization on both of

our test machines with our largest and only hexahedral data set. The earthquake data set

is nearly an ideal example of a complex data set that also lends itself well to our methods

due to our ability to construct a very low overlap MMBVH for it.

The earthquake data set also performs quite well under DVR. We achieve 17.7 and 16.7

million rays per second for our Xeon and Phi nodes respectively. We attribute this again

32

(a) (b)

Figure 5.5: The jets data set rendered (a) as an isosurface using a 16 sample ambient
occlusion renderer, (b) Via DVR

to the earthquake data set lending itself to build a tree with low overlap as well as having

a fairly well balanced cell size across all cells in the grid, which allowed us to tune the

sampling step size to the SPP width very easily.

5.7 CPU vs Coprocessor

The Phi Node outperforms the Xeon node quite well for isosurface rendering, which is

well within expectations considering the amount of compute horsepower that the Phi Node

has at its disposal. The only thing working against the Phi Node with regards to isosurface

rendering is their limited memory. Unlike system memory which can be increased even into

the terabyte scale the coprocessors are limited to their on board memory. Large enough

data sets will begin to suffer from needing to repeatedly shuffle data across the PCI-Express

bus in which case the Xeon Node would begin to outperform the Phi Node.

With regards to DVR performance the Phi Node did not meet initial expectations. Upon

further analysis we conclude that our algorithm is simply not well suited to the hardware

design which struggles with algorithms that jump around the memory space frequently or

have large amounts of branching. This is due to design decisions made for the coprocessors

themselves; they are simply not designed for this particular task. An algorithm designed

with their architecture in mind from the beginning would likely perform quite well, but

33

would suffer from the same eventual pitfalls due to data set size as mentioned for the

isosurface visualization method.

5.8 Comparison to other CPU based methods

Similarly to other implicit isosurfacing alternatives our method does not require exten-

sive pre-computation of the volume data to extract an isosurface. Isosurfaces are generated

on the fly and never exist explicitly in memory.

Unlike other implementations our method enables visualization of an isosurface or a

DVR volume using a single common data structure. This makes it feasible to rapidly and

dynamically swap between volume and isosurface visualization during run time as well as

to mix isosurface and volume visualization of the same data set with much lower memory

overhead.

5.9 Comparison to GPU based methods

Unlike the popular projected tetrahedra technique we do not use an approximation.

Rather than splatting polygons that are roughly similar to the shapes of the cells making

up the data set we directly sample the data for each pixel.

Although similar methods have been developed for GPUs they still suffer from the

inherent constraints of current GPU technology. GPU memory is orders of magnitude

lower than the maximum available host memory on almost nay given system. GPUs are

also not available on all systems and as such cannot be used on general compute nodes

while ours requires no specialized hardware whatsoever.

34

Chapter 6

Conclusions

6.1 Conclusions

Our work is a direct continuation to the research found in [6] and [20]. We have pre-

sented a technique for interactive visualization of both isosurface and DVR visualization of

homogeneous unstructured grids. We used packet traversal of a MMBVH in a ray tracer

implemented with an SPMD compiler to achieve high performance across a wide range of

CPUs and Intel Xeon Phi coprocessors while avoiding the need to write specialized code

for each platform. We find our method to perform interactively and with minimal memory

overhead on general compute nodes without the need for a GPU.

The method as presented performs well for isosurface rendering and can also be used for

direct volume ray tracing without the need for separate data structures. Although initial

performance for DVR visualization was lower than desired through clever use of progressive

refinement we are able to tolerate very high step sizes while still producing high quality

output.

6.2 Future Work

6.2.1 In-situ visualization

Due to our method being capable of working on the unmodified unstructured grid cells

it is well suited to eventual incorporation into an in-situ visualization routine. With further

effort MMBVH build times could be drastically improved which would allow for quick

visualization of simulation results while the simulation is running.

35

6.2.2 Hybrid Traversal Methods and Other Acceleration Struc-
tures

We strongly believe that hybrid traversal methods as found in embree[23] could signif-

icantly improve performance of our approach. It is left as future work to explore patching

embree or developing our own similar library for the MMBVH.

It is also desirable to explore adapting other acceleration structures to take advantage

of the properties of a min-max tree. The properties of some other spatial acceleration

structures could be highly desirable.

6.2.3 Further Exploration of wide SPPs

Wide SPPs were a very late addition to our method and as such did not receive quite

the same level of polish as the rest of the algorithm. It is left as future work to explore

improvements such as adaptive scaling of SPP width to improve performance as well as

exploration of the impact of the number of rays in a packet.

36

Appendix A

Glossary of Terms

• Bounding Volume Hierarchy - A tree of nested bounding volumes used for spatial
subdivision.

• Isosurface - A surface generated from a volume data set for which all points along the
surface have the same isovalue.

• Isovalue - The value of a scalar field for which an isosurface is generated.

• KDTree - K Dimensional Tree used for spatial subdivision. Space is split along an
axis at each tree level. The chosen axis can be picked randomly, in a round robin
order, or through the use of heuristics.

• Min-Max Tree - A Min-Max tree is a special form of any other spatial tree in which
the minimum and maximum values contained in the sub-tree of a node are stored as
part of it.

• OSPRay - An Intel developed open source ray tracing frame work.

• Transfer function - A function through which a scalar value is translated into an
RGBA value.

• Voxel - Voxel is a portmanteau of volume and pixel. As this suggests, it is the basic
unit of representation in a 3D grid. A voxel is a single cell in a 3D grid.

• Packet Tracing - Packet tracing is the act of ray tracing a scene using groups of rays
which will all consider intersection with the same object at the same time. In such
schemes ray coherence is of great importance.

• Plücker Coordinates - Plücker coordinates are used to specify directed lines in three
dimensional space.

• Plücker Space - A geometric space defined by Plücker coordinates.

37

Bibliography

[1] OSPRay Ray Tracing Framework. http://www.ospray.org, 2015. Last Accessed: 2015-
07-15.

[2] Hank Childs, Mark Duchaineau, and Kwan-Liu Ma. A Scalable, Hybrid Scheme for
Volume Rendering Massive Data Sets. In Proceedings of the 6th Eurographics Confer-
ence on Parallel Graphics and Visualization, EGPGV ’06, pages 153–161, 2006.

[3] JooL.D. Comba, JosephS.B. Mitchell, and CludioT. Silva. On the convexification of
unstructured grids from a scientific visualization perspective. In Georges-Pierre Bon-
neau, Thomas Ertl, and GregoryM. Nielson, editors, Scientific Visualization: The Vi-
sual Extraction of Knowledge from Data, Mathematics and Visualization, pages 17–34.
Springer Berlin Heidelberg, 2006.

[4] Martin Eisemann, Thorsten Grosch, Marcus Magnor, and Stefan Mller. Automatic
Creation of Object Hierarchies for Ray Tracing Dynamic Scenes. In IN WSCG SHORT
PAPERS PROCEEDINGS, 2007.

[5] Fan Guo, Hui Li, William Daughton, and Yi-Hsin Liu. Formation of hard power laws in
the energetic particle spectra resulting from relativistic magnetic reconnection. Phys.
Rev. Lett., 113:155005, Oct 2014.

[6] Aaron Knoll, Sebastian Thelen, Ingo Wald, Charles D. Hansen, Hans Hagen, and
Michael E. Papka. Full-resolution Interactive CPU Volume Rendering with Coherent
BVH Traversal. In Proceedings of the 2011 IEEE Pacific Visualization Symposium,
pages 3–10, 2011.

[7] Marc Levoy. Display of surfaces from volume data. IEEE Comput. Graph. Appl.,
8(3):29–37, May 1988.

[8] Luiz Alberto Lima and Rui Bastos. Seismic data volume rendering. Technical report,
1998.

[9] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3d surface
construction algorithm. In Proceedings of the 14th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’87, pages 163–169, New York, NY,
USA, 1987. ACM.

[10] Gerd Marmitt and Philipp Slusallek. Fast Ray Traversal of Tetrahedral and Hexahedral
Meshes for Direct Volume Rendering. In Eurographics/IEEE-VGTC Symposium on
Visualization (EuroVIS), pages 235–242, 2006.

38

[11] Philipp Muigg, Markus Hadwiger, Helmut Doleisch, and Eduard Gröller. Interac-
tive Volume Visualization of General Polyhedral Grids. Visualization and Computer
Graphics, IEEE Transactions on, 17(12):2115–2124, 2011.

[12] A. Neubauer, L. Mroz, H. Hauser, and R. Wegenkittl. Cell-based First-hit Ray Casting.
In Proceedings of the Symposium on Data Visualisation 2002, VISSYM ’02, pages 77–ff,
2002.

[13] Steven Parker, Peter Shirley, Yarden Livnat, Charles Hansen, and Peter-Pike Sloan.
Interactive Ray Tracing for Isosurface Rendering. In Proceedings of the Conference on
Visualization ’98, VIS ’98, pages 233–238, 1998.

[14] Brad Rathke, Ingo Wald, Kenneth Chiu, and Carson Brownlee. SIMD Parallel Ray
Tracing of Homogeneous Polyhedral Grids. In C. Dachsbacher and P. Navrtil, editors,
Eurographics Symposium on Parallel Graphics and Visualization. The Eurographics
Association, 2015.

[15] Stefan Röttger, Stefan Guthe, Andreas Schieber, and Thomas Ertl. Convexification of
unstructured grids. In Proc. Vision, Modeling and Visualization (VMV) 2004, pages
283–292, November 2004.

[16] G D Rubin, C F Beaulieu, V Argiro, H Ringl, A M Norbash, J F Feller, M D Dake, R B
Jeffrey, and S Napel. Perspective volume rendering of ct and mr images: applications
for endoscopic imaging. Radiology, 199(2):321–330, 1996. PMID: 8668772.

[17] Peter Shirley and Allan Tuchman. A Polygonal Approximation to Direct Scalar Volume
Rendering. In Proceedings of the 1990 Workshop on Volume Visualization, VVS ’90,
pages 63–70, 1990.

[18] E. Steen and B. Olstad. Volume rendering of 3d medical ultrasound data using direct
feature mapping. Medical Imaging, IEEE Transactions on, 13(3):517–525, Sep 1994.

[19] Daniel J. Valentino, John C. Mazziotta, and H.K. Huang. Volume rendering of mul-
timodal images: application to mri and pet imaging of the human brain. Medical
Imaging, IEEE Transactions on, 10(4):554–562, Dec 1991.

[20] Ingo Wald, Heiko Friedrich, Aaron Knoll, and Charles D Hansen. Interactive Isosurface
Ray Tracing of Time-Varying Tetrahedral Volumes. Technical Report UUSCI-2007-003,
SCI Institute, University of Utah, 2007. (conditionally accepted at IEEE Visualization
2007).

[21] Ingo Wald, Heiko Friedrich, Gerd Marmitt, Philipp Slusallek, and Hans-Peter Seidel.
Faster Isosurface Ray Tracing using Implicit KD-Trees. IEEE Transactions on Visu-
alization and Computer Graphics, 11(5):562–573, 2005.

[22] Ingo Wald, Philipp Slusallek, Carsten Benthin, and Markus Wagner. Interactive Ren-
dering with Coherent Ray Tracing. Computer Graphics Forum, 20(3):153–164, 2001.
(Proceedings of Eurographics 2001).

[23] Ingo Wald, Sven Woop, Carsten Benthin, Gregory S. Johnson, and Manfred Ernst.
Embree - A Kernel Framework for Efficient CPU Ray Tracing. ACM Transactions on
Graphics (Proceedings of ACM SIGGRAPH), 33, 2014.

39

[24] Jane Wilhelms and Allen Van Gelder. Octrees for faster isosurface generation. ACM
Trans. Graph., 11(3):201–227, July 1992.

40

